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ABSTRACT 
 

The growing focus on improving railway freight transportation in North America 
has resulted in increased attention to safety at highway-railway crossings (HRC). 
Recently, federal government agencies such as US Federal Railroad Administration 
(FRA) and Canadian Transportation Safety Board (TSB) have alluded to safety concerns 
associated with HRC. Safety at HRCs are of considerable importance to the government 
as well as the public due to the significant economic and emotional damages associated 
with accidents at HRC. To address these safety concerns, transportation researchers are 
focusing on developing countermeasures that enhance safety at HRC. Earlier research on 
HRC safety has employed a risk based approach considering both frequency and 
consequence; however, there has been very little research examining the consequence of 
the collision. In this paper, we aim to identify the different factors that influence injury 
severity of highway vehicle occupants, in particular drivers, involved in a vehicle-train 
collision. The commonly used approach to modeling vehicle occupant injury severity is 
the traditional ordered response model. However, the ordered response model restricts 
the effect of various factors on injury severity to be constant across all accidents. It is 
possible that accidents might be grouped (clustered) into different segments to 
differentiate the effects of various factors at the segment level. The current research 
effort proposes an innovative latent segmentation-based ordered response model to study 
injury severity. In this case, individuals (drivers) are assigned probabilistically to 
different segments with probability of getting injured specific to each segment. The 
validity and strength of the formulated collision consequence model is tested using the 
United States Federal Railroad Administration database which includes inventory data 
of all the railroad crossings in the US and collision data at these HRC crossings from 
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1997 to 2006. The research effort will shed light on the most important factors that 
affect the severity of injuries to vehicle occupants involved in collisions.  
 
1. INTRODUCTION 
 

There are over 400,000 highway-railway grade crossings (HRC) in the United 
States catering to a broad spectrum of road and rail traffic. In spite of the recent safety 
initiatives that have substantially reduced the number of HRC collisions, the United 
States Federal Railroad Association (FRA) recorded over 30,000 collisions during the 
ten year period from 1997 to 2006.  Traffic crashes at HRC are often catastrophic and it 
is of utmost importance to transportation agencies and other stakeholders to identify 
collision contributing factors and countermeasures to reduce traffic collisions and the 
resulting consequences.   
 

Collisions occurring at these facilities could result in serious consequences 
(including death) to roadway vehicle occupants, possible injuries to train passengers, and 
substantial property damage due to the release of freight cargoes, and delay in freight 
and highway traffic (Raub 2009). In collisions involving freight rails carrying hazardous 
materials the consequences can be further exasperated due to release of hazardous 
materials into the environment. A number of earlier research studies have focused on 
identifying the contributing factors that affect the occurrence of collisions at HRC (see 
studies such as Saccomanno et al., 2007; Washington and Oh, 2006; Saccomanno and 
Lai, 2005).  These studies employ or combine different techniques such as factor/cluster 
analysis, negative binomial regression models, and Bayesian methods. However, 
collision frequency is only one element of collision risk at HRC. The risk associated 
with a crossing is typically defined as a function of collision frequency and collision 
consequence – total risk (Miranda-Moreno, et al., 2009). To consider just frequency as a 
measure of risk would ignore crossings with a low expected collision frequency, but 
with potential for severe consequences. Therefore, it is essential that research efforts in 
safety literature examine the factors associated with the injury severity (consequence) 
sustained in collisions at HRC. While many previous studies have focused on predicting 
the frequency of collisions, there is a lack of substantive research that particularly 
examines the consequence of collisions at HRC.  
 

This paper seeks to fill the gap in safety literature by focusing on the 
consequence of highway railroad crossings.  The current research effort contributes 
towards this end by examining the influence of a host of exogenous factors on injury 
severity of vehicle drivers involved in collisions at HRC. Specifically, the focus is on 
examining the influence of: (1) driver demographics (including gender, age), (2) 
Characteristics of the vehicle involved in the collision (vehicle type), (3) Crossing 
characteristics (Annual traffic on the highway, railway traffic), (4) Crossing safety 
equipment (presence of gates, traffic signals, watchmen etc.) (5) Environmental factors 
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(weather, lighting conditions, time of day, etc.), and (6) Crash characteristics (role of 
vehicle in crash etc.).  
 

In road safety literature, a host of studies have examined driver injury severity 
(in highway crashes) employing the traditional ordered response mechanism to take into 
account the inherent ordering of the reported driver injury severity (see for example 
O’Donnell and Connor 1996; Eluru and Bhat, 2007). In this study we also employ a 
similar ordered response mechanism but with an important extension of considering 
latent segmentation (see Bhat 1997 for an example of latent segmentation based 
approach to unordered response models). In the traditional ordered response model the 
effect of exogenous variables are assumed to be identical across the entire population, 
i.e., we are imposing response homogeneity for the entire population. The assumption in 
most cases is restrictive and might lead to incorrect policy assumption. An interesting 
question arising out of this limitation is: how do we account for this potential response 
heterogeneity? An often employed approach in safety literature to address this restriction 
is the formulation of a random coefficients ordered logit model (see Eluru and Bhat, 
2007). However, the random coefficients ordered logit model accounts for unobserved 
components of heterogeneity. Prior to incorporating mechanisms to capture unobserved 
heterogeneity it is important to accommodate systematic heterogeneity in the modeling 
framework. In this research effort, we propose to accommodate this systematic 
heterogeneity by using a latent segmentation based approach. The latent segmentation 
based approach probabilistically assigns individuals based on the exogenous variables to 
different segments. Subsequently, an ordered response model is estimated of each of 
these latent segments. The latent segmentation based ordered response framework is 
estimated using data drawn from the Federal Railroad Administration (FRA) Office of 
Safety Analysis Web Site. The database employed in our analysis provides information 
on traffic crashes involving rail and motor vehicles for the period 1997-2006. 
 

The rest of the paper is organized as follows: Section 2 provides the details of the 
methodological issues examined and Section 3 presents the econometric model. Section 
4 outlines the data preparation steps and discusses the results of the model estimation. 
Section 5 concludes the paper. 
 
2. METHODOLOGICAL ISSUES 
 

The dearth of research in modeling injury severity of drivers involved in HRC 
collisions is particularly surprising considering the fact that a considerable number of 
research efforts in safety literature devoted to examining injury severity of vehicle 
drivers on roadway crashes. The statistical approaches employed for examining driver 
injury severity in roadway crashes are directly applicable to modeling collision 
consequence at HRC. In our current empirical analysis, we examine driver injury 
severity employing an ordered response framework. However, we attempt to address 
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some important methodological issues relating to existing approaches within the ordered 
response framework. Typically, the ordered response models impose response 
homogeneity across the entire population i.e. the effect of exogenous variable is treated 
to be the same across the entire population. To relax this assumption, research studies 
have employed the random coefficients ordered response framework. These approaches 
relax the assumption of response homogeneity by allowing the coefficients to be 
randomly distributed across the population. The drawback of these approaches is that 
they entail complicated simulation machinery for estimating the model. Moreover, these 
approaches enhance the model by accommodating for unobserved heterogeneity as 
opposed to systematic heterogeneity. It would be very useful to formulate an approach 
that accommodates for systematic heterogeneity prior to investigating the influence of 
unobserved heterogeneity. It is in this context that latent segmentation models have been 
employed (see Bhat 1997 for a similar discussion).  
 

The latent segmentation model assigns individuals probabilistically to segments 
based on socio-demographics. The latent segmentation model recognizes that 
individuals in a population are not homogenous and hence can be assigned to different 
segments probabilistically. Each of these segments has its own injury severity model (an 
ordered response model in our context). The whole set of exogenous variables are 
employed as potential determinants in the segmentation choice. The approach begins 
with model estimation considering two segments. The number of segments is 
determined by adding one segment at a time until further addition does not enhance the 
log-likelihood. The approach estimates the coefficients corresponding to individual 
assignment, segment specific injury severity ordered response component and also the 
number of segments.  
 

Thus, in the current study we formulate and estimate a latent segmentation based 
ordered response model. In fact, the authors are not aware of any earlier research effort, 
not only in safety literature but also in econometric literature in general of a latent 
segmentation based ordered response model. The econometric underpinning of the latent 
segmentation ordered response model are described in the next section. 
 
3. ECONOMETRIC FRAMEWORK 
 

The modeling of vehicle driver injury severity is achieved using a latent 
segmentation based ordered response model. Let us consider S homogenous segments of 
the driver’s involved in HRC collisions (S is to be determined). The pattern of injury 
severity within the segment remains identical. However, there are intrinsic differences in 
the pattern of injury severity across different segments i.e. we have a distinct ordered 
response model for each segment (1,2,..S).  
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Within each segment, we formulate the ordered response model in its traditional form. 
Let q (q = 1, 2, …, Q) be an index to represent drivers and let k (k = 1, 2, 3, …, K) be an 
index to represent injury severity. The index k, for example, may take values of “no 
injury” (k = 1), “injury” (k = 2), and “fatal injury” (k = 3), as in the empirical analysis in 
the current paper. The equation driver injury severity model is: 

qsqsqs xy εα +′=* , kyq =  if 
1

*
k ks q syψ ψ
−
< <                                            (1) 

The equation represents the latent propensity *
qsy  associated with the injury severity 

sustained by driver q in the accident if he were to belong to segment s. This latent 
propensity *

qsy is mapped to the actual injury severity level qy  by the ψ  thresholds (

0sψ = −∞  and
Ksψ = ∞ ) in the usual ordered-response fashion. qx  is an (L x 1) column 

vector of attributes (not including a constant) that influences the propensity associated 
with injury severity. α  is a corresponding (L x 1)-column vector of coefficients and qε  
is an idiosyncratic random error term assumed to be identically and independently 
standard logistic distributed across individuals q. 
 
The probability that driver q sustained injury severity k is given by: 

      1

' '( ) | ( ) ( )
k kq s s q s s qP k s x xψ α ψ α

−
= Λ − −Λ −                                    (2) 

where (.)Λ represents the standard logistic cumulative distribution function. 
 
Now we need to determine how drivers are probabilistically assigned to segments. The 
random utility based multinomial logit structure is employed for the segmentation 
model. The utility for assigning a driver q to segment s is defined as: 

                 
* '
qs s q qsU xβ ξ= +                                             (3) 

qx  is an (L x 1) column vector of attributes (not including a constant) that influences the 
propensity associated with injury severity. β  is a corresponding (L x 1)-column vector 
of coefficients and qsξ  is an idiosyncratic random error term assumed to be identically 
and independently Type 1 Extreme Value distributed across individuals q and segment s. 
Then the probability that driver q belongs to segment s is given as: 

          

'

'

exp( )
exp( )

s q
qs

s q
s

x
P

x
β
β

=
∑                                                           (4) 

Based on the above discussion, the unconditional probability of individual sustaining 
injury severity k is given as: 

1
( ) ( ( ) | )( )

S

q q qs
s

P k P k s P
=

=∑                                                 (5) 

The parameters to be estimated in the model are ands sβ α for each s and the number of 
segments S. The log-likelihood function for the entire dataset is provided below: 
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−

=∑                                           (6) 
It is important to note that the estimation of latent class models using quasi-

Newton routines can be computationally unstable (see Bhat 1997 for a discussion). The 
estimation of such models requires employing good starting values for the estimation 
procedure. For our analysis, the log-likelihood function and its corresponding gradient 
function were coded in Gauss Matrix programming language. 
 
4. DATA 
 
4.1 Data Source 

The Federal Railroad Administration (FRA) provides information on the type, 
causes, consequences, and mitigating circumstances of train collisions experienced 
annually nation-wide in the US for the period 1975-2010. These data are readily 
available for downloading from the FRA, Office of Safety Analysis Web Site 
(http://safetydata.fra.dot.gov/OfficeofSafety/). The US FRA website contains two 
databases related to HRC: (1) collision records (called “Highway-Rail Grade Crossing 
Accident/Incident Form F 6180.57”) and (2) inventory database (called “U.S. DOT 
Crossing Inventory Form”). In this analysis records for the 10-year period from 1997-
2006 were employed. The collision database contains information such as driver 
demographics, vehicle characteristics, the driver actions during collision, and crossing 
safety infrastructure deployed, The inventory database contains detailed information 
regarding railway traffic flow, list of crossing safety infrastructure deployed, roadway 
type classification, highway Annual Average Daily Traffic (AADT), presence and type 
of advance warning signs etc corresponding to all the crossings in the U.S.. The data sets 
contain a unique identifier to merge the crossing infrastructure information with the 
actual collision record. The collision database was merged with appropriate crossing 
information using this unique identifier.  
 

In this research, the analysis is confined to collisions occurring at public grade 
crossings on the main railway line. We do not consider collisions occurring at yards, 
sidings and industrial locations. Further, we focus our attention on the injury severity of 
the motor vehicle driver only in our analysis. The data assembly process involved 
removing records with missing and inconsistent information. The final sample compiled, 
after checking thoroughly for consistency, contains 14,532 observations.  The injury 
severity of each individual involved in a crash is coded on a three-point ordinal scale: (1) 
No injury, (2) Injury, and (3) Fatal injury. The driver injury severity distribution in the 
final data sample is as follows: No injury (62.0%), injury (27.6%) and Fatality (10.4%).  
 
4.2 Model specification 

This section presents the model estimation results in detail. The variables 
considered in the empirical analysis include driver demographics, characteristics of the 
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vehicle involved in the collision, crossing characteristics, crossing safety equipment, 
environmental factors, and crash characteristics. The final specification was based on a 
systematic process of removing statistically insignificant variables and combining 
variables when their effects were not significantly different. The specification process 
was also guided by prior research and intuitiveness/parsimony considerations. We 
should also note here that, for the continuous variables in the data (such as age and time 
of day), we tested alternative functional forms including linear and spline (or piece-wise 
linear), and dummy variables for different ranges.  
 

In this research effort, we estimated two different model specifications. First, we 
estimated the traditional ordered logit (OL) model. Second, we estimated the latent 
segmentation based ordered logit (LSOL) model. The final specifications of these 
models were obtained after extensive testing. For the LSOL model the model with two 
segments offered the best statistical fit. Prior to discussing the model results we compare 
the performance of the OL and LSOL models. The OL and LSOL models are not nested 
within each other. Hence, we employ two measures that are suited to comparing non-
nested models to determine the model that offers superior statistical fit: (1) Bayesian 
Information Criterion (BIC)1

 

 and (2) Ben-Akiva and Lerman’s adjusted likelihood ratio 
(BL) test.  

The BIC for a given empirical model is equal to − 2ln(L) + K ln(Q) , where ln(L) 
is the log-likelihood value at convergence, K is the number of parameters, and Q is the 
number of observations. The model with the lower BIC value is the preferred model. 
The BIC values for the final specifications of the OL and LSOL models are 22978 and 
22726 respectively.  
 

The BL test statistic (Ben-Akiva and Lerman 1985) is computed as: 

{ }2 2

2 1 2 12( ) ( ) ( )L C M Mτ ρ ρ = Φ − − − + −  
 where

2
ρ represents the McFadden’s 

adjusted rho-square value for the model. It is defined as 
2 ( )1

( )
i i

i
L M

L C
βρ −

= − where 

( )iL β  represents log-likelihood at convergence for the ith ( )L C model, represents log-
likelihood at sample shares and Mi is the number of parameters in the model 
(Windmeijer, 1995) Φ.  The  represents the cumulative standard normal distribution 
function. The BL test computes the probability that we could have obtained the higher 

2
ρ value for the model with a probability of no larger than τ . The 

2
ρ values thus 

                                                 
1 The reader will note that we chose to employ BIC because it imposes substantially higher penalty on 
over-fitting with excess parameters compared to the penalty imposed by Alkaike Information Criterion 
(AIC). AIC is defined as − 2ln(L) + 2K.  
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computed for the OL and LSOL models are 0.111 and 0.135 respectively. The resulting 
τ value for the comparison of OL and LSOL models is ( 603.8)Φ − = 0.  
 

In our case study, the BIC and the BL test statistics clearly confirm that the 
LSOL model offers substantially superior data fit compared to the OL model. This 
validation of our hypothesis indicates that the population of drivers involved in HRC is 
probabilistically clustered in at least two subpopulations with distinct influence of 
exogenous variables on injury severity probabilities. Hence, in the following 
presentation of empirical results we will confine ourselves to a discussion of LSOL 
model results for the sake of brevity.  
 
4.3 Estimation Results 

The LSOL model that offered that best statistical fit consisted of two segments. 
The model estimation results for the segmentation component and the injury severity 
component are presented in Table 1.  

 
 

Table 1: LSOL Model estimates of Vehicle Driver Injury Severity 

 Estimate t-stats 
Latent Segmentation Component   
Propensity to be part of second segment (first segment is the base alternative)   
Constant -3.4730 -9.330 
Age (≤40 years is base)   
   41 – 64 years 0.2336 2.23 
   > 64 years 0.6441 5.229 
Vehicle Type (Pickup is the base)   
   Sedan -0.3242 -2.066 
   Minivan -0.4512 -2.685 
Time period of the day   
   6 AM to 9 AM 1.2414 7.021 
   9 AM to 12 PM 1.4637 8.798 
   12 PM to 3 PM 1.5237 9.425 
   3 PM to 7 PM 1.1464 7.574 
Weather conditions (Clear weather is base)   
   Rain -0.4186 -2.456 
   Fog -1.2762 -2.601 
   Snow -0.7688 -2.410 
Temperature    
   ≤32 F 0.1690 1.355 
   33 – 60 F -0.1867 -2.315 
Role of vehicle in the crash (struck the rail is base)   
   Struck by the rail 2.1433 7.195 
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Injury Severity Component   
 Segment I   
Threshold Parameters   
   Threshold 1 3.2944 16.975 
   Threshold 2 5.8481 25.457 
Gender   
   Male -0.3762 -6.015 
Time period of the day   
   6 AM to 9 AM -0.194 -1.852 
   9 AM to 12 PM -0.503 -4.454 
   12 PM to 3 PM -0.4915 -4.29 
   3 PM to 7 PM -0.3714 -4.11 
Weather conditions (Clear weather is base)   
   Snow -0.3595 -1.82 
Role of vehicle in the crash (struck the rail is base)   
   Struck by the rail -0.1818 -2.285 
Motorist action at the event of a crash (base is other action)   
   Drove around or through the gate 2.3347 12.777 
   Motorist stopped and then proceeded    1.8297 8.78 
   Motorist did not stop 2.4323 14.372 
Estimated Train Speed 0.0271 13.605 
Type of Warning Device present (base is wig wags, presence of watchman, 
highway traffic signals etc.)   
   Gates -0.3227 -2.367 
   Cross bucks 0.2015 2.854 
   Stop signs -0.3052 -3.388 
   Other 0.1998 2.298 
Roadway classification (base is other Urban highways)   
   Rural Major Collector 0.3911 4.301 
   Rural Minor Collector 0.1162 1.086 
   Other Rural Roads 0.3349 2.283 
   Urban Principal Arterial 0.179 1.499 
Segment II   
Threshold Parameters   
   Threshold 1 2.725 9.471 
   Threshold 2 5.7573 16.869 
Age (≤40 years is base)   
   41 – 64 years 0.4626 3.411 
   > 64 years 1.0468 6.796 
Time period of the day   
   6 AM to 9 AM -0.8627 -3.212 
   9 AM to 12 PM -1.2115 -4.915 
   12 PM to 3 PM -0.9906 -4.091 
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   3 PM to 7 PM -1.0802 -4.519 
Motorist action at the event of a crash (base is other action)   
   Drove around or through the gate 1.9366 9.572 
   Motorist stopped and then proceeded    0.9417 4.424 
   Motorist did not stop 1.1831 9.183 
Estimated Train Speed 0.1093 16.789 
Type of Warning Device present (base is wig wags, presence of watchman, 
highway traffic signals etc.)   
   Gates -0.4957 -3.256 
   Other 0.2279 1.554 
Maximum Posted Train Speed for the crossing 0.0047 1.438 
Railway equipment involved in the crash   
   Moving train car 0.8839 2.646 
Number of Locomotive units 0.0565 1.278 
Roadway classification (base is other Urban highways)   
   Rural local highway 0.1265 1.177 
Log-Likelihood at constants -12896.8 
Log-Likelihood at convergence -11104.4 
Adjusted rho-square 0.135 
Number of observations 14532 

 
 
4.3.1 Latent Segmentation Component 
The latent segmentation component determines the probability that a driver is assigned 
to one of the two latent segments. In our empirical analysis, the first segment is chosen 
to be the base and the coefficients presented in the table correspond to the utility for the 
driver to choose segment two (see Equation 3).  The results provide interesting insights 
on the likelihood of assigning individuals to different segments based on the exogenous 
variables. 
 

The constant term clearly indicates a strong inclination for drivers to be more 
likely to be assigned to the first segment i.e. the first segment if intrinsically populated 
by drivers at high risk. Age of the driver has a substantial influence on segment 
assignment. Specifically, individuals between the years 41 and 64 years are more likely 
to be assigned to the second segment. The propensity is further increased for individuals 
65 and above. The results clearly indicate a clear segmentation of the population based 
on age. The choice of vehicle type has an impact on how the drivers are assigned to 
different segments. In particular, the results indicate that drivers using a sedan or a 
minivan are less likely to be assigned to segment two. The result, though surprising at 
first sight, is not improbable. The implication of the vehicle type impact is that 
individual’s choice of vehicles is a precursor to travel behavior.  There has been support 
to this argument in recent safety literature. Paleti et al. (2010) has found relationship 
between vehicle choice and potential aggressive behavior.  
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The environmental conditions considered such as time of day, weather and 

temperature conditions exert substantial influence on assigning drivers to different 
segments. In particular, time of day impacts driver segment assignment in an interesting 
manner. Collisions occurring during the time period day from 6AM to 7PM are more 
likely to be assigned to the second segment. At the same time, collisions occurring under 
inclement weather (rain, fog, snow) are less likely to be assigned to segment two. Within 
the three weather elements, fog weather has the strongest disinclination while the rain 
has the lowest disinclination of assigning the driver to segment two. The temperature at 
the time of the crash also affects the driver assignment. Specifically, the collisions 
occurring at temperatures below 32°F are more likely to be assigned to segment two 
while collisions occurring between 32 °F and 60 °F are more likely to be assigned to 
segment one. The role of the vehicle at the time of the collision also exerts an important 
influence on segment assignment. If the vehicle driver was struck by the rail, at the time 
of collision, the collision is very likely to be assigned to segment two. 
 

The individuals in the database are probabilistically assigned to two different 
segments based on a host of exogenous variables. The first segment can be summarized 
as collisions that involve younger drivers of age 40 and lower, driving a sedan or a 
minivan. These crashes are likely to occur during the night, and under inclement 
weather. Generally, these are drivers at a higher risk compared to those assigned to the 
second segment.  The second segment can be characterized as collisions involving older 
drivers (41 and above) and driving a pickup. These collisions occur during the day, 
under clear weather conditions, and mostly with temperatures below 32 °F and involve 
being struck by the rail. 
 
4.3.2 Injury Severity Component: Segment One 

The ordered logit model corresponding to segment one is described in this 
section. The interpretation of the coefficients follows the usual ordered response 
frameworks. The positive coefficients represent increased propensity to sustain severe 
injury while negative coefficients represent reduced propensity to sustain injury.  
 

Within segment one, males are likely to sustain less severe injuries compared to 
females. This is not surprising, since males are physiologically stronger than females. A 
similar result has often been reported in safety literature examining driver injury severity 
in roadway crashes (see Eluru and Bhat 2007, Paleti et al, 2010).  
 

The time period of the day during which the collision occurs influences the 
likelihood of sustaining injuries. Specifically, we find that all collisions occurring during 
the day between 6AM to 7PM are likely to result in less severe injuries compared to the 
time period between 7PM to 6AM.  This is potentially because vehicle drivers are less 
aware of the existence of a railway crossing during the night time due to lack of 
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visibility. Within the day time periods, the 6AM to 9AM is less safe compared to other 
times periods. It is possible that visibility is an issue during early morning periods also.  
 

The presence of snow at the HRC reduces the likelihood of severe injury. The 
result, though counter intuitive at first glance, is relatively easy to explain. The presence 
of snow causes the drivers to be cautious and drive slowly and the subsequent collisions 
occurring during snow result in less severe injuries. A similar result on the influence of 
snow on driver injury severity has been reported earlier in safety literature (see Eluru 
and Bhat 2007). 
 

The role of vehicle in the collision and motor vehicle driver action substantially 
influence the collision consequence. The results indicate that when a train collides into a 
vehicle the driver is more likely to escape with less severe injuries compared to when a 
vehicle driver collides with the vehicle. The reasoning behind these results is not entirely 
clear and would require additional investigation. Drivers that drive around or through the 
gate or those who do not stop at the HRC are prone to sustain severe injuries in the event 
of a collision. Drivers that stop and proceed at the time of the collision also sustain 
severe injuries but less severe than the previously mentioned driver actions. As you 
would expect, estimated train speed has a positive effect on injury propensity. The faster 
the train is travelling the severe is the injury to the driver.  
 

The results corresponding to the safety equipment present at the crossing provide 
interesting insights. The results indicate that the presence of gates and stop signs at the 
crossing reduce injury severity. However, the presence of other safety equipment or 
absence of safety equipment result in increased injury severity.  
 

The database did not contain valid information on either vehicle speed at the time 
of the collision or the posted speed limit on roadways near the crossing. Hence, in our 
analysis, we employed roadway classification as a proxy for vehicle speed before the 
collision. The results indicate that, in general, collisions occurring on HRC with rural 
highways are likely to result in severe injuries compared to the collisions occurring at 
HRC with urban highways. Among the rural highways, major collector roads and other 
rural roads lead to more severe crashes while crashes on minor rural collector roads 
result in least severe injuries. Among urban highways, urban principal arterials results in 
the most severe collisions. 
 

Thresholds in the ordered response model form the boundary point for the 
different injury severities. In our first segment, when the latent propensity of the 
individual is less than 3.2944 the driver sustains no injury. The driver sustains a serious 
injury when the propensity is between 3.2944 and 5.8481. The driver is fatally injured 
when the propensity value is greater than 5.8481. 
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4.3.3 Injury Severity Component: Segment Two 
Vehicle driver age has a significant influence on the injury severity of drivers. 

Specifically, drivers aged 41 and above are likely to be more severely injured compared 
to younger drivers. The drivers aged 64 and above are susceptible to more severe 
injuries. The result is a clear indication of how allowing for two segments enables us to 
extract out different effects. Vehicle age was not statistically significant for the first 
segment. The result indicates that injury severity of individual’s likely to be part of the 
first segment is unaffected by driver age whereas injury severity of individual’s likely to 
be part of second segment is influenced by driver age. The result provides credence to 
our hypothesis that exogenous variables have distinct effects on different segments of 
the population. 
 

The time period of the day during which the collision occurs influences the 
likelihood of sustaining injuries. Specifically, we find that all collisions occurring during 
the day between 6AM to 7PM are likely to result in less severe injuries compared to the 
time period between 7PM to 6AM.  The signs of the time of day coefficients are 
identical to those observed in the time of day coefficients in segment one. However, 
there is substantial difference in magnitudes of these coefficients. Again, this clearly 
underlines that influence of exogenous factors on injury severity is not homogenous 
across the population. 
  

The role of vehicle in the collision variable did not have any influence on the 
injury severity for segment two. The motor vehicle driver action influence on collision 
consequence is very similar to the trend observed in segment one. However, the 
magnitudes of coefficients in segment two are very different from the magnitudes of 
coefficients observed in segment one. With an increase in the estimated train speed at 
the event of collision the propensity to sustain severe injuries also increases. This is 
similar to what we have observed in segment one. However, the reader should note that 
the magnitude of the coefficient is about 4 times the magnitude of the coefficient in 
segment one. The result implies that individuals that are part of the segment two are 
more affected by the train speed at the time of impact. 
 

The presence of crossing control devices provides similar results to segment one. 
The only difference in this regard is the absence of any significant effect of the stop sign 
variable on injury severity. The results on the crossing devices clearly suggest a review 
of existing safety procedures at HRC. Specifically, the results indicate that apart from 
gates and stop signs, other safety control devices do not play any role in alleviating 
driver injury severity.  
 

The result corresponding to maximum allowed train speed variable indicates that 
with increase in train speed limit the injury sustained also increases. The increase in 
propensity magnitude is however marginal. For instance, for an increase in speed limit 
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from 50 to 70 the change in propensity is only 0.094. The railway equipment involved in 
the collision also affect injury severity component for individuals assigned to segment 
two. In particular, the results indicate that collision with a moving train car results in a 
more severe injury to the driver. The increase in number of locomotive units connected 
to the train also has a positive influence on driver injury severity. As the number of 
locomotive units increases the kinetic energy transferred to the car at the time of 
collision would increase leading to more severe injuries. Roadway classification 
variables in the second segment do not influence injury severity as substantially as they 
do in the first segment. Only, crashes occurring on local rural highways are susceptible 
to severe injuries in this segment. 
 

The threshold coefficients for segment two are clearly different from the 
thresholds in segment one. In fact, the thresholds for the second segment are smaller 
than those of the first segment. This implies that individuals that are more likely to be 
assigned to segment two are also more likely to severely injured compared to their 
counterparts. In the second segment, when the latent propensity of the individual is less 
than 2.7250 the driver sustains no injury. The driver sustains a serious injury when the 
propensity is between 2.7250 and 5.7573. The driver is fatally injured when the 
propensity value is greater than 5.7573. 
 

The impact of exogenous variables on injury severity in both component offer 
interesting insights. Further, the results clearly highlight that exogenous variables affect 
injury severity distinctly for the two segments. These results stress the importance of 
accommodating for such heterogeneity in the model framework employed to compute 
the impact of exogenous variables on injury severity. Neglecting the presence of such 
significant heterogeneity will result in incorrect estimates. 
 
5. CONCLUSIONS  
 

This research has attempted to examine the influence of various exogenous 
factors on the injury severity of motor vehicle drivers involved in HRC collisions. 
Specifically, the emphasis is on understanding the effect of (1) driver demographics 
(including gender, age), (2) Characteristics of the vehicle involved in the collision 
(vehicle type), (3) Crossing characteristics (Annual traffic on the highway, railway 
traffic), (4) Crossing safety equipment (presence of gates, traffic signals, watchmen etc.) 
(5) Environmental factors (weather, lighting conditions, time of day, etc.), and (6) Crash 
characteristics (role of vehicle in crash etc.). 
 

We have proposed an innovative econometrical approach, a latent segmentation 
based ordered logit (LSOL) model, to accurately determining the influence of exogenous 
variables on injury severity. . The approach recognizes that influence of exogenous 
factors on injury severity is not homogenous across the entire population. Hence, it is 
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important to accommodate for this response heterogeneity in the modeling framework. 
Towards this end, the LSOL model probabilistically assigns individuals to different 
segments and within each segment the individuals are considered to be homogenous. For 
each of these segments a separate ordered logit model is estimated. The approach 
endogenously determines the number of segments.  
 

The LSOL model was estimated using data obtained from Federal Railroad 
Administration (FRA) Office of Safety Analysis Web Site. The collision records for the 
10-year period from 1997-2006 were employed in our research. The analysis was 
confined to drivers involved in collisions occurring at public HRC. The collision records 
were appended with their corresponding crossing information appropriately.  
 

The model estimation results provide insights into the influence of factors that 
increase or decrease the collision consequences (levels of driver injury severities). The 
LSOL model clearly outperforms the traditional ordered logit model thus providing 
support to our hypothesis that the effect of exogenous variables is not homogenous 
across the population. The LSOL model offered optimal statistical performance with two 
latent segments. The segmentation component of the model shows light on the 
assignment of individuals to the two segments. The results categorize crashes involving 
younger drivers of age 40 and lower, driving a sedan or a minivan that are likely to 
occur during the night, and under inclement weather into the first segment. On the other 
hand, the second segment consisted of collisions involving older drivers (41 and above) 
and driving a pickup that occur during the day, under clear weather conditions, and 
mostly with temperatures below 32°F and being struck by the rail. The injury severity 
results for the two segments are also very different. The exogenous variables influencing 
injury severity vary across the two segments. To clearly understand the magnitude of the 
coefficients on the probability of driver injury severity aggregate level elasticity 
measures are computed. These measures highlight indicate that the variables driver’s age 
65 or greater, the vehicle is struck by the rail, motorist actions (including drove around 
or through the gate, motorist stopped and proceeded, and motorist did not stop), and 
collision with a moving train car are more likely to exacerbate driver injury severity in 
the event of highway-railroad crashes. Based on the elasticity computations, we find that 
OL models computes inaccurate elasticity measures for a number of exogenous 
variables. These results clearly underscore the importance of allowing for impact of 
exogenous factors to be flexible across different segments in the data. 
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